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Abstract 

Komorebi, the dappled sunlight filtering through trees, offers restorative benefits in outdoor and 
indoor environments. While studies have examined its presence, movement, and changes in 
illuminance, a comprehensive understanding of its dynamic properties remains largely 
unexplored. This study develops a framework to quantify the spatial and temporal 
characteristics of Komorebi patterns. The methodology involves collecting Komorebi scenes, 
extracting their temporal and spatial features, and creating a multidimensional representation 
to capture these features effectively. The spatial feature analysis focuses on light pattern 
dispersion, intensity correlations, and spectral analysis of two-dimensional patterns; the 
temporal analysis, on the other hand, examines movement, directional changes, and brightness 
fluctuations. This study introduces a novel approach for categorizing and representing different 
typologies of Komorebi, and establishes a basis for examining people's respons es to Komorebi 
patterns. 
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1 Introduction 

Nature is widely acknowledged for its restorative qualities (Kaplan & Kaplan, 1989; Ulrich et al., 
1991). Incorporating natural elements into indoor spaces thus offers the potential to enhance 
well-being in environments where many people spend a large majority of their time. One such 
element is the dappled sunlight that filters through trees, known in Japanese as Komorebi, 
which has shown potential for inducing restorative effects both in outdoor nature (Fujisawa et 
al., 2012) and indoor settings as projected light patterns (Karibe et al., 2019).  

Existing studies have explored various aspects of Komorebi, including comparisons of its 
presence versus absence (Takayama et al., 2020), differences between static images and 
moving videos (Chamilothori et al., 2022) – with dynamic Komorebi seemed to enhance 
preference, fascination, and association with nature compared to static conditions –, light patch 
movement tracking (Karaman-Madan et al., 2023), and illuminance changes studied through 
spectral analysis (Nakamura and Kozaki, 2024). Based on these studies and others, it appears 
that the multidimensional spatio-temporal qualities of komorebi hold the key to its distinct well -
being benefits.  

Spatially, these dappled light patterns exhibit scale-invariant distributions similar to fractals, 
which have been associated with increased interest, preference, and relaxation (Aboushi et al., 
2019). Natural patterns optimize visual processing efficiency (Taylor, 2006; Spehar et al., 
2016), with most natural patterns falling close to 1/f distributions (Wilkins, 2016). The temporal 
dynamics of komorebi, on the other hand, arise from wind-leaf interactions that produce 
naturally rhythmic movements. Such natural rhythms – also present in phenomena like ocean 
waves and wind – often exhibit 1/f characteristics and have been associated with reduced stress 
and enhanced restoration (Musha, 1980) as these natural variations may induce meditative 
states through "soft fascination” (Kaplan, 1995). Despite these distinctive characteristics,  the 
actual movement and directional dynamics of Komorebi remain largely unexplored. Karaman et 
al. (2023) did attempt to examine komorebi's motion effects by isolating temporal dynamics 
from other natural cues, using artificially generated white circles on a black background to 
represent dappled sunlight. They compared three conditions: a natural -movement condition 



(where circles mimicked the speed and direction of real  komorebi), a non-natural-movement 
condition (with randomized positions and ordered size changes), and a static control. 
Surprisingly, while both dynamic conditions were rated as more fascinating than static light —
with no significant difference between natural and non-natural motion—neither was perceived 
as more strongly "associated with nature" than the other. This suggests that motion alone—
without organic shapes, textures, or gradient—may be insufficient to evoke nature’s restorative 
effects.  

These findings collectively highlight the need to study Komorebi holistically, considering how 
its spatial organization, brightness variations, temporal rhythms, and movement patterns seem 
to work together in creating their unique perceptual effects.  

Achieving this requires a comprehensive analytical framework capable of capturing the spatio-
temporal characteristics inherent to Komorebi patterns in a systematic way, which is the goal 
of this study. By identifying the relevant spatial and temporal features and selecting suitable 
metrics, the study addresses current gaps in understanding Komorebi patterns  and establishes 
a basis for further exploration of their restorative potential.  

 

2 Methodology 

Given the intricate spatial compositions and subtle temporal dynamics of  Komorebi, an 
interdisciplinary approach combining findings borrowed from landscape ecology, computational 
vision science, and visual perception research offers a promising basis to characterize their 
patterns. Landscape ecology provides insights into spatial complexity and clustering patterns 
commonly observed in natural environments (Forman, 1986; Turner et al., 2001). Signal 
processing and computer vision methodologies, on the other hand, have successfully quantified 
subtle temporal variations in visual scenes (Simoncelli & Olshausen, 2001), particularly relevant 
to Komorebi’s temporal variations. Additionally, visual perception research highlights 
significance of 1/f spectral characteristics in natural patterns, which are efficiently processed 
by the human visual system and linked to perceived naturalness and aesthetic preference 
(Field, 1987; Nishida, 2011). 

To systematically characterize the unique spatial distribution of komorebi patterns, multiple 
methodologies were evaluated and ultimately led to the selection of the Nearest Neighbor Index 
(NNI) (Clark & Evans, 1954) and Moran's I (Moran,  1950). NNI was chosen over alternatives 
such as Ripley's K-function (Ripley, 1977) and quadrat analysis (Greig-Smith, 1952) because it 
quantifies clustering versus dispersion of light patches with a single normalized value, 
facilitating comparisons across different scenes without scale dependency. Meanwhile, Moran's 
I was selected among various spatial autocorrelation metrics such as Geary's C (Geary, 1954) 
and Getis-Ord Gi (Getis & Ord, 1992) for its ability to capture global intensity relationships while  
maintaining robustness across varying illumination conditions. Additionally, we applied 1/f 
analysis to spatial frequencies, building on evidence that natural scenes typically exhibit 1/f 
power spectra and that human visual systems have evolved to efficiently process such patterns.  

For the temporal dynamics highlighted earlier, we implemented optical flow analysis (Horn & 
Schunck, 1981) after considering alternatives including feature tracking algorithms, particle 
image velocimetry (Adrian & Westerweel, 2011), and frame differencing (Jain & Nagel, 1979). 
Optical flow was selected for its ability to generate comprehensive vector fields describing both 
magnitude and direction of movement for each pixel region with relatively lower computational 
demands, capturing the subtle, complex motions characteristic of Komorebi patterns that may 
contribute to their "soft fascination" effects. In addition, we extended our 1/f analysis to temporal 
frequencies as well, examining how brightness fluctuations in Komorebi patterns exhibit fractal 
characteristics over time – addressing the natural rhythms discussed above. Integrating these 
complementary analytical techniques enables a detailed characterization of the spatial -
temporal features central to Komorebi’s perceptual and restorative qualities. 



3 Data collection and feature extraction 

This section outlines our approach for capturing Komorebi patterns under controlled conditions 
and details the procedures for extracting the spatial and temporal metrics defined earlier. The 
process started by recording videos of real Komorebi with enough spatial and temporal 
variations, then focused on quantifying these spatio-temporal characteristics: relative 
positioning and intensity of light patches (through NNI and Moran’s I) and type and direction of 
their respective movements (optical flow and directional patterns), complemented by 1/f 
analyses.  

 Komorebi video collection 

Figure 1 – Setup for Komorebi video recording 

Komorebi videos were recorded in natural settings under trees, where s unlight is filtered 
through the leaves to create dappled light patterns (Figure 1). To eliminate distractions, a white 
matte surface was used as the projection plane. Recordings were conducted under clear skies 
using a high-resolution camera mounted on a tripod with a horizontal arm for top-down captures. 
The camera was set to manual mode with multi-point focus, ensuring proper focus. The 
luminance histogram was checked prior to recording to maintain balanced mid -tones and 
highlights, avoiding both overexposure and underexposure. Sufficient duration and frame rate 
were required to capture the temporal dynamics of the lighting patterns. For the purposes of 
this study, each scene was recorded for approximately 60 seconds at 24 frames per second.  

 

Figure 2 – Figure 2 – Spatial features analysis. (a) Spatial Annotation: Komorebi light spots 
marked with red points. (b) NNI: Nearest neighbor index for spatial clustering assessment. (c) 

MRD: Mean Ripleyan distance from reference point (blue cross). (d) Moran's I: Spatial 
autocorrelation with reference point (yellow) and connecting lines. Spatial features 



The spatial features of the Komorebi patterns were extracted from locating the light patches’ 
centers, as indicated in Figure 2a, at which the light intensity value was determined. Due to the 
blurry and overlapping nature of Komorebi, automated extraction of the light patches’s centers 
proved unfeasible, requiring instead a manual selection process based on visual inspection. 
For the spatial feature analysis, light patches were selected at regular intervals throughout each 
video until the spatial metrics stabilized, based on the criterion of a running average change of 
less than 1% - a threshold commonly used in statistical convergence analysis to ensure data 
representativeness while minimizing sampling redundancy. 

The spatial distribution of light patches , quantified using the Nearest Neighbor Index (NNI)  
(Figure 2b), compares the arrangement of points to a random distribution a low NNI (<1) 
indicates clustering, while a high NNI (>1) suggests dispersion. For this analysis, the centroids 
of each light patch was used to calculate the NNI:   
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where 

𝑑obs,𝑖 is the nearest neighbor distance for each light patch;  

ρ  is the density of points, normalized by the image area; 

N refers to the number of light patches; 

W, H  are the image width and height. 

 

The spatial correlation of light intensities, analyzed using Moran’s I (Figure 2d), uses a 
metric for spatial autocorrelation: high Moran’s I values (close to 1) indicate clustering of similar 
intensities, while low values (close to -1) suggest randomness. The brightness at each light 
patch centroid was the parameter used for this analysis, where Moran's I is calculated as: 
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where 

𝑥𝑖 ,𝑥𝑗  are the light intensity values at locations 𝑖 and 𝑗; 

𝑥  is the mean intensity;  

𝑑𝑖𝑗  is the Euclidean distance between points I and j;  

 

Komorebi images were also analyzed via spatial spectral analysis in the frequency domain. 
The amplitude spectrum was derived using a Fourier Transform, with frequency components 
characterized by a power-law relationship where higher β values represent smoother patterns, 
while lower values β reflect intricate textures instead: 

𝐴(𝑓) =
1

𝑓𝛽  (3) 

where 

β quantifies the decay of amplitude with spatial frequency.  

 

Additionally, the Mean Radial Distance (MRD) (Figure 2c) was used to analyze the spatial 
distribution of light patches relative to the image center. A low MRD value indicates that light 
patches are concentrated near the center, while a high value suggests that light patches are 
more dispersed toward the edges. To enable cross-scene comparison, MRD was normalized 
using the diagonal length of the image. The complete formula is pr ovided in Equation (4):  
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where 

𝑥𝑖, 𝑥𝑗  represents the coordinates of each light patch;  

𝑥𝑐, 𝑦𝑐 denotes the center of the image.  

 

 Temporal features 

As shown in Figure 3, the motion of Komorebi patterns was analyzed using optical flow, which 
measures movement between consecutive video frames. Average movement was quantified by 
calculating the magnitudes of optical flow vectors for each frame interval and averaging across 
the entire image. In addition to movement magnitude, the directional variation was assessed 
by computing the circular variance of the dominant direction over time. The complete 
formulation is shown in Equation (5): 
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where 

θ is the dominant optical flow direction. 

The temporal frequency of brightness fluctuations in the Komorebi video was analyzed 
using 1/f analysis on brightness time-series data. A Fourier Transform was applied to compute 
the power spectral density (PSD), which was then fitted to a power-law model:  

𝑃(𝑓) =
1

𝑓𝛼 (6) 

where 
α, determined by linear regression of log-transformed PSD data, represents the decay rate of 

power with frequency. 

A low α value indicates rapid fluctuations, while a high α value signifies slower, smoother changes in 
brightness over time. 

Figure 3 – Temporal feature analysis. Optical flow visualization (left) with color wheel 
indicating motion direction and velocity magnitude; dominant movement direction 

distribution (center); and movement intensity over time (right)  



4 Analysis results 

 Spatio-temporal characteristics 

The spatial analysis revealed variations in light patch dispersion and intensity correlations, 
along with consistent spatial spectral characteristics. The Nearest Neighbor Index (NNI) values 
ranging from 1.1 to 1.4 indicate that Komorebi light patches tend toward dispersion rather than 
clustering, with values closer to the lower end suggesting nearly random distributions and those 
approaching the upper end demonstrating more pronounced regular spacing between patches . 
Moran’s I values ranged from 0.003 to 0.217, suggesting that the brightness values of Komorebi 
light patches are generally randomly distributed, with some scenes exhibiting moderate 
clustering of similar intensities at the higher Moran's I values . MRD values consistently 
clustered between 0.52 and 0.67, indicating that light patches maintain a relatively consistent 
distribution pattern around the image center across d ifferent Komorebi scenes. Spatial spectral 
analysis consistently yielded β values around 1, indicating a balanced representation of both 
smoothness and detail, which is corroborated by the literature: natural patterns seem to often 
exhibit β ≈ 1 in amplitude spectrum analysis (Wilkins, 2016). Given the consistency observed 
in Komorebi's spatial spectral analysis, this feature will not be considered as one that could 
effectively demonstrate the variability of Komorebi, and therefore will not be shown in the 
feature representation of Komorebi in Figures 4 and 5.  

The temporal analysis captured variability in both movement and brightness fluctuations. As 
shown in Figure 3, the natural wind-driven Komorebi (top row) shows movement concentrated 
within a narrow directional range and with stable intensity over time. In contrast, the hand -
induced movement (bottom row) displays both greater directional diversity and higher temporal 
fluctuations in intensity. Temporal frequency analysis revealed α values from 1 to 2.7, with 
values near 1 indicating faster, more dramatic changes, and higher values indicating slower, 
smoother fluctuations. Previous studies, using a rough grid of illuminance me asurements, 
reported α values between 1 and 2 (Nakamura and Kozaki, 2024). Our analysis – which 
evaluated brightness variations across the entire frame with a broader selection of Komorebi 
scenes – captured a wider range, with α values extending to 2.7. 

Overall, our analysis represents the first quantitative methodology to fully characterize 
Komorebi features across both spatial and temporal dimensions. While previous studies simply 
categorized Komorebi as dynamic or static, or assessed movement broadly as random versus 
natural, our approach provides specific quantitative references for measurable properties 
defining the Komorebi phenomenon. This comprehensive quantification creates a basis for 
precise characterization of Komorebi. 

 Representation and scaling 

Given the multidimensional nature and interrelated characteristics of Komorebi patterns, radar 
plots were chosen to visualize the spatial and temporal features simultaneously, capturing their 
relative magnitudes and interactions within a single, intuitive layout while effectively highlighting 
differences and similarities among the Komorebi patterns’ characteristics of interest. To ensure 
meaningful comparisons among features with different scales, data were normalized using z-
scores. A snapshot of the corresponding video is shown next to each radar plot in Figure 4  to 
allow a quick reference when it comes to spatial features. These snapshots are grouped by 
similar spatial distributions (NNI and MRD values), though their corresponding radar plots often 
show distinct temporal characteristics due to varying dynamic conditions - such as differences 
in wind strength (from gentle breezes to strong gusts) or manual interactions (including both 
regular oscillations and random shaking motions).  

This representation reveals in particular that artificially manipulated Komorebi (indicated by 
bold outline) show pronounced increases in temporal variability compared to natural wind-driven 
Komorebi. Among the spatial features, Moran's I shows the highest variability - even within the 
same Komorebi scene group (comparable NNI/MRD). This likely occurs because Moran's I, 
while a spatial metric, captures temporal fluctuations in light intensity patterns  that get averaged 
into its final value across video frames. By merging multiple dimensions into a single coherent 
representation, subtle yet meaningful distinctions in how Komorebi differs become readily 
perceptible, enabling researchers to understand, identify, compare, and group light patterns 
based on their comprehensive spatio-temporal characteristics. 



 

 

Figure 4 – Radar plots of spatio-temporal Komorebi features. Top right: Reference guide 
showing six dimensions (light gray: temporal features; dark gray: spatial features). Remaining 
plots: Feature profiles for different Komorebi scenes, with bold outlines indicating artificially 

manipulated Komorebi. 

 Clustering typologies 

Further analysis through clustering of Komorebi videos revealed distinct groupings based on a 
combination of spatial and temporal features, illustrated by Figure 5. Using the elbow method, 
we determined the optimum number of clusters as the smallest number beyond which further 
increasing k yields minimal improvement. These statistically meaningful clusters capture natural 
divisions in the data that correspond to distinct Komorebi pattern types with shared 
characteristics.  

The cluster analysis of spatio-temporal Komorebi features reveals a clear two-class structure 
across all six measured dimensions, with scenes captured at the same location exhibiting strong 
clustering behavior in spatial characteristics. Manually activated Komorebi (bold o utlines) 
demonstrate distinctive grouping patterns in temporal dynamics, particularly  clustering 
movement and α features. This separation is most pronounced in the α dimension, where all 
manually activated instances consistently group in the low-α region compared to natural 
Komorebi, suggesting that artificial manipulation produces more spectrally predictable 
brightness changes that distinctly differentiate from the dynamic spectral characteristics of 
naturally occurring Komorebi. In contrast, while the variation in direction feature maintains the 
overall two-class structure, the separation between manually activated and natural instances is 
less pronounced, with both types distributed across the boundary, indicating this feature i s less 
capable of distinguishing between natural and artificial Komorebi variations.  

The clusters reveal that Komorebi patterns actually resolve into distinct typologies with specific 
spatio-temporal features. This classification goes beyond the traditional binary labels and offers 



a more refined understanding of both distinctions and commonalities among various Komorebi 
patterns. In practical terms, what was once simply deemed a “dynamic”  or “natural” Komorebi 
pattern can now be recognized as one of several dynamic sub-types with particular spatio-
temporal signatures. 

 

Figure 5 – Clustering of Komorebi videos with radar plots 

 Limitations of framework 

While this study provides a useful framework for analyzing and representing the spatio -temporal 
dynamics of Komorebi, certain limitations remain. The features analyzed are simplified 
representations of a complex natural phenomenon. Although the proposed measures capture 
key dynamics of Komorebi, considering additional aspects—such as the orientation and size of 
light patches—could provide useful complementary perspectives.  

Regarding the actual extraction of parameters or their analysis, the manual way of noting the 
light patterns may introduce variability in annotation consistency ; employing multiple annotators 
to independently document patterns could potentially mitigate this bias. Furthermore, the 
current approach represents light patches as point locations with single intensity values, which 
may oversimplify their complex, gradient-based characteristics. Future work could explore 
alternative representations such as contour mapping or intensity -weighted regions to better 
capture the variations within light patches. The framework also does not account for human 
perceptual thresholds—some measured variations might be imperceptible to human observers 
and thus less relevant for restorative effects research. This relationship between measur able 
features and perceptual significance will need to be evaluated through further perception 
studies. 



5 Conclusions 

The application of texture and video feature analyses specifically to Komorebi patterns 
represents an important advancement by providing a comprehensive quantitative 
characterization previously unavailable in the literature. Our findings extend beyond broad 
categorizations of Komorebi, uncovering distinct typologies within them based on detailed 
spatial and temporal properties. 

This study provides several important new discoveries. The spatial analyses reveal distinct 
patterns of dispersion and intensity correlation, demonstrating that Komorebi light patches 
consistently tend toward dispersion rather than clustering, with distributions ranging  from nearly 
random to moderately regular spacing. Our temporal analyses provide a refined understanding 
of Komorebi's movement dynamics, revealing clear distinctions between artificially manipulated 
and naturally occurring Komorebi, with artificial instances particularly clustering in low-α regions 
indicating more spectrally predictable brightness changes compared to the dynamic spectral 
variations of natural occurrences. Additionally, the multidimensional representation and 
clustering of Komorebi features introduced in this study offer an intuitive way of identifying and 
comparing pattern variants. 

By effectively capturing these spatial and temporal dynamics, our framework enables the design 
of targeted experimental stimuli for future research exploring relationships between specific 
Komorebi features and human responses. In the long term, the quantitative spatial and temporal 
features proposed in this paper could serve as a methodological foundation for designing 
shading systems or indoor lighting that replicates the dynamic qualities of Komorebi, thereby 
enhancing indoor experiences. 
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